VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. (CBCS) I-Semester Backlog Examinations, January-2018

Computer Organization

Time: $\mathbf{3}$ hours
Marc. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

1. Determine by means of truth table the validity of DeMorgan's theorem for three variables $(A B C)^{1}=A^{1}+B^{1}+C^{1}$.
2. Draw 4-bit synchronous binary counter.
3. Explain about Three-State Bus Buffers.
4. Illustrate the need for Accumulator.
5. Define
a) Microprogram
b) Micro-operation.
6. "A computer is not just a calculator but also a symbol manipulator", Justify.
7. List any four addressing modes where effective address is obtained by computation.
8. Write the steps in division algorithm.
9. Compare isolated I/O and memory-mapped I/O.
10. Draw the memory hierarchy in a computer system.

Part-B $(5 \times 10=50 \mathrm{Marks})$

11. a) Illustrate the working of a 4-to-1 line multiplexer using figure and function table.
b) Explain different ways of integer representation.
12. a) Discuss the working of a 4-bit binary adder using a figure.
b) Write and explain the steps involved in an Interrupt Cycle, using flowchart.
13. a) Illustrate the need for program interrupt.
b) Explain how the mapping from instruction code to a microinstruction address can be done by means of a read only memory.
14. a) How are branch instructions handled in a pipeline?
b) Draw and explain one stage of a decimal arithmetic unit that can add or subtract two $B C D$ digits.
15. a) Write about associative mapping and direct mapping in cache memory
b) Explain Daisy-Chaining Priority, using a figure.
16. a) State the different types of flip-flops. Explain using truth tables.
b) Explain Instruction cycle with the help of a Flow Chart.
17. Answer any two of the following:
a) Discuss the working of the Microprogram Sequencer
b) Explain various addressing modes with an example
c) Discuss Direct Memory Access in detail.
