Hall Ticket Number:

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. (CBCS) I-Semester Backlog Examinations, January-2018

Computer Organization

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Determine by means of truth table the validity of DeMorgan's theorem for three variables $(ABC)^1 = A^1 + B^1 + C^1$.
- 2. Draw 4-bit synchronous binary counter.
- 3. Explain about Three-State Bus Buffers.
- 4. Illustrate the need for Accumulator.
- 5. Define a) Microprogram b) Micro-operation.
- 6. "A computer is not just a calculator but also a symbol manipulator", Justify.
- 7. List any four addressing modes where effective address is obtained by computation.
- 8. Write the steps in division algorithm.
- 9. Compare isolated I/O and memory-mapped I/O.
- 10. Draw the memory hierarchy in a computer system.

Part-B $(5 \times 10 = 50 Marks)$

11.	a) Illustrate the working of a 4-to-1 line multiplexer using figure and function table.b) Explain different ways of integer representation.	[5] [5]
12.	a) Discuss the working of a 4-bit binary adder using a figure.b) Write and explain the steps involved in an Interrupt Cycle, using flowchart.	[4] [6]
13.	a) Illustrate the need for program interrupt.b) Explain how the mapping from instruction code to a microinstruction address can be done by means of a read only memory.	[5] [5]
14.	a) How are branch instructions handled in a pipeline?b) Draw and explain one stage of a decimal arithmetic unit that can add or subtract two BCD digits.	[5] [5]
15.	a) Write about associative mapping and direct mapping in cache memoryb) Explain Daisy-Chaining Priority, using a figure.	[5] [5]
16.	a) State the different types of flip-flops. Explain using truth tables.b) Explain Instruction cycle with the help of a Flow Chart.	[5] [5]
17.	 Answer any <i>two</i> of the following: a) Discuss the working of the Microprogram Sequencer b) Explain various addressing modes with an example c) Discuss Direct Memory Access in detail. 	[5] [5] [5]

ଔଔଷଧ୍ୟରାହ୍ୟ